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Abstract

Purpose—Diagnosis of obstructive sleep apnea by the gold-standard of polysomnography 

(PSG), or by home sleep testing (HST), requires numerous physical connections to the patient 

which may restrict use of these tools for early screening. We hypothesized that normal and 

disturbed breathing may be detected by a consumer smartphone without physical connections to 

the patient using novel algorithms to analyze ambient sound.

Methods—We studied 91 patients undergoing clinically indicated PSG. Phase I: In a derivation 

cohort (n = 32), we placed an unmodified Samsung Galaxy S5 without external microphone near 

the bed to record ambient sounds. We analyzed 12,352 discrete breath/non-breath sounds (386/

patient), from which we developed algorithms to remove noise, and detect breaths as envelopes of 

spectral peaks. Phase II: In a distinct validation cohort (n = 59), we tested the ability of acoustic 

algorithms to detect AHI < 15 vs AHI > 15 on PSG.

Results—Smartphone-recorded sound analyses detected the presence, absence, and types of 

breath sound. Phase I: In the derivation cohort, spectral analysis identified breaths and apneas with 

a c-statistic of 0.91, and loud obstruction sounds with c-statistic of 0.95 on receiver operating 

characteristic analyses, relative to adjudicated events. Phase II: In the validation cohort, automated 

acoustic analysis provided a c-statistic of 0.87 compared to whole-night PSG.

Conclusions—Ambient sounds recorded from a smartphone during sleep can identify apnea and 

abnormal breathing verified on PSG. Future studies should determine if this approach may 

facilitate early screening of SDB to identify at-risk patients for definitive diagnosis and therapy.
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Introduction

Sleep-disordered breathing (SDB) affects an estimated 30 million individuals in the USA 

alone [1], and is responsible for diverse sequelae including days lost from work, daytime 

sleepiness, accidents, decreased productivity, and hospitalization for heart failure and atrial 

fibrillation. Sleep disordered breathing is treatable with continuous positive airway pressure 

(CPAP) or mandibular therapy [2–4], yet many at-risk individuals remain undiagnosed and 

under-treated [5] due to delays in obtaining in-laboratory (polysomnography, PSG) or 

multichannel home sleep testing (HST) [6]. A tool for early, rapid screening by physicians, 

dentists, and/or patients could enable high-risk patients to be rapidly triaged for definitive 

diagnosis by PSG or HST and definitive therapy.

We hypothesized that normal and disturbed breathing should be detectable from ambient 

sound recorded from a consumer smartphone without physical contact with the patient. We 

reasoned that analysis of the periodicity and amplitude of breaths should detect their absence 

(apnea) or shallowness (hypopnea), i.e., key diagnostic components, and identify loud 

gasping sounds (consistent with arousals in obstructive sleep apnea, OSA). We set out to 

define acoustic signatures for SDB based on key diagnostic elements, which may differ from 

prior studies on surrogates, e.g., snores, heart rate variability [7]. For instance, Nakano et al. 

[8] detected snores with a smartphone that correlated with PSG, but snores may not always 

reflect diagnosed OSA. Other reports, while interesting, required specialized equipment and 

physical contact, e.g., sound analysis from a PSG mask [9] or during sleep endoscopy [10], 

electroencephalography [11], electromyogram [12], or oximetry [13] which may be less 

suited or tolerated by patients for wide at-home screening.

We tested our hypothesis by analyzing ambient sound recorded on an unmodified 

smartphone with no additional equipment in a prospective study of patients undergoing 

simultaneous PSG for suspected obstructive sleep apnea (NCT03288376). Phase I of the 

study involved the development of acoustic signatures for normal and abnormal breaths in a 

derivation cohort, while phase II validated the ability of these signatures to diagnose OSA 

from clinically adjudicated whole-night PSG in a separate test cohort.

Methods

Study design

We recruited individuals ≥ 21 years of age undergoing clinically indicated PSG to assess 

sleep-disordered breathing as part of an IRB-approved clinical study (Western IRB approval 

#20142343, 1½5/14), conducted from 2015 to 2016 in three AASM-accredited laboratories 

in the USA (see Supplement). Individuals were included if they had clinical suspicion for 

OSA (N = 223). Exclusions included prior previous PSG or HST, prior surgery for OSA, a 

medical contraindication for PSG, or factors that may interfere with completing informed 
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consent or the clinical questionnaire. Each subject had sound recordings from a consumer 

smartphone (Galaxy S5, Samsung corporation, Seoul, South Korea) placed on the bed-side 

during PSG. No patient received CPAP therapy nor was wearing a mask during recordings.

The study included N = 91 patients in two phases. In phase I (algorithm derivation), we 

selected 32 individuals from the entire dataset who provided examples of normal breathing, 

hypopnea, apnea, arousals, and noisy recordings. We developed acoustic analysis algorithms 

calibrated to these events. In phase II (validation), we randomly identified 70 patients from 

the dataset excluding those in phase I, of whom N = 59 had complete whole-night acoustic 

recordings. This comprised the clinical validation cohort, in whom we performed receiver 

operating characteristic analysis of the algorithm developed in phase I against simultaneous 

PSG.

Smart phone recordings at polysomnography

Sound files were recorded from unmodified smartphones. The recording protocol oriented 

the smartphone microphone toward the patient, < 1 m from the head of the bed. Equipment 

in each sleep laboratory (listed in Appendix) comprised pulse oximetry, nasal flow, ECG, 

respiratory effort, and EEG. PSGs were adjudicated by certified sleep technicians at each 

center, blinded to any smartphone analysis.

Recordings were made using the audio recording function of each smartphone. To recreate 

real-world settings, no attempt was made to pause recordings at times of external noise (e.g., 

television), speech (e.g., by the patient or staff), wakefulness, arousal, or other events. 

Recordings were stored on each phone’s storage drive as “.wav” files, of typical size ~5 

MB/min or ~2.4GB for 8 h (smaller for shorter recordings). Recordings were then exported, 

fully de-identified, for analysis.

Phase I: development of acoustic analysis algorithm

Analytical algorithms were created in Matlab (version 2016a, The Mathworks, Natick, MA). 

The N = 32 patients in phase I (algorithmic development) comprised 32 individuals (37.5% 

women) with body mass index 33.0 ± 7.73 kg/m2 and STOP-BANG scores 4.13 ± 1.62. 

These patients provided breath sounds of various types. Sound was sampled at 44.1 kHz and 

digitized files were analyzed offline in 60–120 s epochs.

Noise reduction and signal conditioning—To identify breaths from background 

noise, each sound epoch was spectrally decomposed using a fast Fourier transform (FFT) 

using a Kaiser-Bessel window (length = 256, ß = 5). An example is shown in Fig. 1a, in 

which bands (color coded by frequency) represent successive breaths. A spectral magnitude-

time series was created for each epoch as the median of spectral power for all frequencies at 

each millisecond (Fig. 1b). Each minute of the sound file was excluded if amplitudes were 

too low, defined a priori as (a) lowest 2 percentile of amplitudes in that epoch; (b) dynamic 

range < 0.75 dB.

Developing algorithms for normal and abnormal breaths—The algorithm was 

applied to defined breaths and non-breath sounds, referenced to a database of ambient 
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sounds constructed for phase I and over-read by three readers (PS, TN, RS) with 

discrepancies resolved by consensus. The database consisted of 12,352 breaths (386/patient) 

sampled from whole-night sound recordings, including annotated apnea, hypopnea, arousals 

(marked by loud obstructive sounds), and normal breathing referenced to PSG. We defined 

algorithmic acoustic signatures for each class of breath event.

Identifying discrete breaths (peaks)—Breaths were defined from the spectral 

magnitude-time series of the sound file. A median filter of duration 10 ms was applied to 

attenuate transient fluctuations, then a root-mean-squared (RMS) envelope function was 

applied. To identify “packets” of sound which may correspond to a breath event, each 

second of the smoothed signal was divided into blocks of 1225 samples. We calculated RMS 

envelope of window size 300 samples. Individual RMS envelopes were concatenated to form 

the final RMS envelope. Peak detection was applied to smoothed spectral magnitude-time 

series to identify an array of maxima (Fig. 1c).

Breaths Bn were defined as having onset time Tn, duration Dn, and height Hn (Fig. 1d). For 

each breath, we defined its largest peak, separated from other local maxima via topological 

prominence. Prominence mathematically defines the peak as the point above the lowest 

contour line (local minimum) that bounds it but contains no higher peak. If the prominence 

of a peak is Hn, then passing from this peak to any higher peak (i.e., another breath) requires 

a displacement defined as an, passing through lower minima. The prominence of breath Bn = 

Hn – amplitude of local minimum (key col.; Fig. 1d). Peaks were separated by at least 50 ms 

with peak width of 20 ms.

Identifying non-breath sound signals—We hypothesized that breath sounds should be 

discrete and periodic, while non-breath sounds (noise) may be loud, non-repeating, and/or of 

long continuous duration. We used frequency-domain analyses to test this hypothesis.

The enveloped spectral-magnitude time series was smoothed using a 100 point median filter 

(i.e., 100 out of 1224 points, ~81.7 ms). We calculated the area An of each spectral packet 

using the trapezoidal rule (dB s; Fig. 1d). Area outliers, defined liberally (to keep close to 

mean areas) were removed if > mean area ± 1 SD. Optimal area cutpoints for non-breath 

versus breathing sounds were defined from the database created for this project referenced to 

adjudicated simultaneous PSG.

Phase II: validation of acoustic analysis algorithm

For clinical validation, we randomly identified N = 70 individuals from our clinical study 

who were not used for algorithm development, of whom N = 59 had complete whole-night 

acoustic data. In these individuals, we created an acoustic Respiratory Index (RI) to compare 

the results of smartphone sound analysis against entire-night PSG. RI was computed from 

the numbers of abnormal breaths or apneas, and the optimum cutpoint identified which was 

analogous to AHI for moderate OSA (i.e., AHI > 15 events/h). RI was then evaluated for the 

two-bin case of normal and mild OSA (AHI < 15 events/h) versus moderate and severe OSA 

(AHI >= 15 events/h). Analyses were performed using open source “R” statistical analysis 

software, with the “OptimalCutpoints” package.
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Statistical analysis

Continuous data are represented as mean ± standard deviation (SD). In phase I, the sound 

algorithm was developed from a database of breath and non-breath sounds created for this 

project, which were annotated by direct listening referenced to adjudicated simultaneous 

polysomnograms in each patient. Comparisons between groups were made with Student’s t 
tests and summarized with means and standard deviations for independent samples if 

normally distributed or, if not normally distributed, with the Mann-Whitney U test and 

summarized with medians and quartiles. Nominal values were expressed as n (%) and 

compared with chi-square tests or the Fisher exact test when expected cell frequency was < 

5. Multi-rater agreement was assessed using Fleiss’ Kappa score.

In phase II, AHI scores from PSG in each patient were compared to acoustic respiratory 

index (RI) using receiver operating characteristic curves. PSG-AHI scores were assigned 

from each treating center, as the average of two technicians’ reports blinded to acoustic 

analysis. From ROC analysis of RI to no/mild versus moderate/several OSA from PSG, we 

derived sensitivity and specificity for this endpoint.

A probability of < 0.05 was considered statistically significant for all analyses.

Results

Table 1 provides clinical details for individuals in the validation cohort, each of whom 

underwent smartphone sound recordings simultaneous with clinically indicated 

polysomnography.

Algorithmic development

Spectral decomposition of sounds during normal breathing—Figure 1 illustrates 

1 min of sound recorded by a smartphone during sleep in a 72-year-old woman with body 

mass index (BMI) 25.7 kg/m2 analyzed spectrally (Fig. 1a). Each band corresponds to an 

audible breath, of periodicity ~0.2 Hz and duration Tn = 1–2 s. Figure 1b indicates the 

spectral magnitude-time series, summarizing magnitudes across frequencies at each time 

point with peaks clearly visible. Figure 1c shows tagging of breaths for this file, using peaks 

from which beats were defined by parameters summarized in Fig. 1d.

Clinical derivation of optimum cutpoints for breaths, non-breath noises—We 

tested the algorithm for adjudicated breath events from the PSG in our development 

database. The ROC of peak prominence for defining breaths produced a c-statistic (area) of 

0.91 (Fig. 2a). The optimum cutpoint was 0.21.

Similarly, we derived cutpoints for non-breath sounds corresponding to periods of body 

movement on simultaneous PSG. ROC of packet area for non-breath sounds yielded a c-

statistic of 0.95 with an optimal cutpoint of 15,000 dB s (Fig. 2b).

Automatic identification of apnea—Figure 3 illustrates 1 min of sound recorded during 

sleep in a 55-year-old man with BMI 30.7 kg/m2 and a history suggestive of obstructive 
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sleep apnea undergoing PSG. Spectral analysis (Fig. 3a), magnitude-time series (Fig. 3b), 

and peak detection (Fig. 3c) are shown.

Normal breaths are seen for the first 20 s of the sound file, at a rate of 0.25 Hz (one every 4 

s) each of duration Tn = 1–2 s. Breaths then cease from 22 to 49 s, followed by the 

resumption of peaks. This period corresponded with clinical apnea (> 10 s) on simultaneous 

PSG (Fig. 3d), and was followed by an arousal event in which EEG, EMG, and body 

movement showed high activity from 50 to 60 s. During the arousal, breath-peaks are still 

seen on acoustic spectral analysis together with additional peaks indicating noise.

Spectral decomposition of sounds during movement noise—Figure 4 illustrates 1 

min of sound recordings recorded during sleep in a 47-year-old woman with BMI 64.8 

kg/m2. Spectral (Fig. 4a) and spectral-peak analyses (Fig. 4b) are shown.

Period spectral bands are seen up until 40 s, which correspond to breaths with periodicity 

~0.2 Hz and duration Tn = 1–2 s. However, at ~42 s, a series of rapid additional sound bands 

occur (Fig. 4a), which are narrow in duration (Tn < 1 s) and disturb the periodicity of peaks 

(Fig. 4b). The simultaneous polysomnogram in Fig. 4c shows body movement at 42–50 s, 

which was heard to cause these additional spectral sounds.

Automatic identification of non-breath sounds from breaths—Figure 5 illustrates 

sound recordings during sleep in a 55-year-old man with clinical suspicion for sleep apnea. 

Acoustic spectral analysis (Fig. 5a) and peak analysis (Fig. 5b) show period breaths 

throughout the 100-s period as well as additional non-periodic and brief sounds. The spectral 

magnitude-time series (Fig. 5b) shows that sounds from 22 to 30 s had fewer distinct peaks. 

Area analysis of this packet (Fig. 5c) was 26,613 db s, above the ROC-derived cutpoint for 

non-breath sounds. Auditory examination confirmed that this segment represented noise. 

Figure 5d shows the corresponding PSG recording.

Phase II: Clinical validation

In blinded analysis of the validation cohort, Fig. 6 shows ROC curve of the respiratory 

index, i.e., acoustically detected breath disturbances, compared to PSG-defined AHI ≥ 15 

events/h. The c-statistic was 0.87. To optimize sensitivity for screening, the cutpoint of RI = 

13.43 was selected and predicted AHI ≥ 15 events/h with a sensitivity of 93.7%, specificity 

of 63.0%, negative predictive value of 89.5%, and positive predictive value of 75.0%. 

Alternative cutpoints could be selected to provide higher specificity with expected trade-offs 

in sensitivity (for instance, a cutpoint of RI = 22.7 provided sensitivity 78.1%, specificity 

85.2%), which could be tailored to ambient noise in the specific environment being tested.

Discussion

We show that sound recorded from an unmodified smartphone during sleep, avoiding 

specialized equipment and physical contact with the patient, can identify acoustic signatures 

of sleep disordered breathing. We first developed an algorithm to separate normal breath 

sounds, apnea, and arousals referenced to the gold standard of concurrent PSG. In a separate 

validation cohort, these acoustic signatures provided high clinical accuracy for moderate-
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severe OSA at PSG. To the best of our knowledge, this is the first study to demonstrate the 

ability of smartphone monitoring alone to identify key breathing components of SDB, and 

differs from prior studies that required specialized equipment typically available only 

through a laboratory, or that focused on surrogate signals. Further studies should test if a 

screening strategy for SDB based on acoustic analysis may identify high-risk individuals 

who can then be referred for traditional PSG diagnosis and therapy.

Approaches for wider screening

There are several increasingly recognized challenges to screening US adults for sleep 

disordered breathing [14]. One potential approach may be to facilitate early and rapid 

screening of patients seen in family practice [15], dental clinics [16], or other venues where 

patients may be unaware of this diagnosis. While screening questionnaires may help identify 

at-risk individuals, e.g., the Berlin or STOP-BANG scores, such tools are not tailored to 

individual physiology and may have limited accuracy [17]. The PSG, while the gold 

standard for diagnosis, introduces limitations for screening [18, 19] including its in-

laboratory setting, need for multiple physical connections, expense, inter-test variability 

including first-night effect, and variability in interpreting test results due to competing 

scoring criteria [20]. Improved, cost-efficient screening for SDB may enable rapid triage of 

high-risk individuals who are currently unscreened for gold standard PSG followed by 

prescription and titration of therapy as needed.

The current study extends the literature by defining acoustic signatures for SDB, i.e., which 

reflect pathophysiological patterns of breathing. Acoustic diagnosis offers the ultimate 

potential for unobtrusive, repeatable screening for sleep disordered breathing with or without 

attached wires or sensors. If further validated, acoustic analysis could potentially improve 

the value of HST [18, 19], which has experienced limited acceptance in part due to lack of 

physiological data. Quantification of lung ventilation (breaths) using acoustic analysis of 

ambient sound may provide some of this physiological information. In this way, acoustic 

analysis also has the potential to augment in-laboratory or home sleep testing. Some inter-

observer variability of sleep studies reflect “equivocal epochs” which account for > 25% of 

sleep, particularly in awake/NREM, N1/N2, and N2/N3 sleep [20]. Analysis of breaths could 

help to understand such epochs, and provide additional information to help in coding 

hypopnea [21] or arousals [12].

Applicability of smartphones to health screening

Smartphone technology continues to grow worldwide with tens of millions of users in the 

developed and developing world, and an explosion of mobile health (mhealth) applications. 

These applications have great promise if applied scientifically and judiciously, but an 

emerging challenge is to ensure that they are appropriately tested and clinically validated to 

guide patient expectations. Several mHealth systems exist to record and diagnose the ECG, 

to measure oximetry and pulse using the light source and camera of the mobile device 

applied to the fingertip [22] and face [23], to assess cognitive function, to analyze actigraphy 

(movement) as a general index of health, and many other functions as recently reviewed 

[24]. Literature is emerging on the reliability of mHealth applications compared to gold 
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standard diagnostic screening tests, with many providing adequate approximations yet 

falling short of the accuracy needed for disease screening or health management [25]. The 

current study aims to provide a rigorous clinical validation of a novel mHealth application 

for screening SDB.

Prior studies using smartphones to diagnose sleep disordered breathing

Few studies have analyzed ambient sound produced by an individual during sleep to track 

the presence or absence of breath sounds, arousal sounds, or noisy sounds, compared to the 

gold standard diagnosis from PSG.

Nakano et al. used a smartphone taped to the anterior chest to analyze sound to detect 

tracheal snore sounds, which correlated with sleep disordered breathing (AHI > 15) on PSG 

with sensitivity 70% and specificity 94% [8]. These results, while impressive, may not be 

suitable for screening for which a higher sensitivity may be desired. Additionally, taping a 

smartphone to the chest may not resolve the inconvenience of current HST. Future studies 

should determine if abnormal breathing events may be missed by snore analysis alone (i.e., 

reduced sensitivity) or if normal snores in individuals without SDB are inadvertently 

captured (i.e., reduced specificity). Koo et al. analyzed smartphone recordings during drug-

induced sleep endoscopy [26] using spectral analysis to identify the pharyngeal region of 

obstruction. However, sounds during drug-induced sleep endoscopy may differ from natural 

at-home sleep. That study and others used equipment in addition to a smartphone to detect 

SDB. Garde et al. used a finger oximetry analyzed by smartphone, heart rate variability, and 

clinical variables to train a linear classifier with acceptable accuracy for SDB [13]. Al-Mardi 

et al. presented a sophisticated smartphone system to combine data streams from an 

oximetry device, a microphone placed on the throat and an accelerometer, which showed 

promising correlation to OSA in a pilot study of 15 patient samples [24]. Chang et al. 

analyzed heart rate variability by ECG and found a moderate association with SDB [7]. 

These and other studies used special equipment including external microphones [9, 27, 28], 

oximetry [29, 30], the EEG [11], EMG [12], and movement sensors [6].

Next mechanistic and clinical steps

The present study furthers the emerging science of acoustic analysis to probe the physiology 

of breathing. Recording sound from an external microphone, Ben-Israel et al. developed 

Gaussian mixture models to detect snore, noise, and silence events with 92% sensitivity for 

OSA (AHI ≥ 10), and identified novel acoustic features of sleep-breathing including silence, 

stability, and variance of sounds and pitch [31]. Acoustic analyses may ultimately identify 

the level of airway obstruction [26] or airflow phenotypes associated with facial structure 

[32]. Clinically, acoustic screening of SDB should be tested as a gateway to definitive 

diagnosis by PSG or HST in diverse scenarios, to ensure that algorithms are robust to noise, 

varying distance of the phone from the individual, and other nocturnal variations in 

breathing. These studies will provide the foundation to test the ability of acoustic diagnostics 

to streamline referral to sleep testing or to complement existing technologies for in-

laboratory testing.
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Limitations

This proof-of-concept study has many limitations. First, although we used a widely available 

smartphone (Samsung Galaxy S5 or later), future studies should perform head-to-head 

comparisons of multiple smartphones. Smartphone technology has advanced so rapidly that 

most new smartphones today should have the capabilities of phones used in this study. 

Second, future studies should establish boundary limits such as distance from the user, 

maximum or minimum sound intensities, or acoustic qualities of the testing environment. 

Third, while several noise reduction approaches were applied (see analyses and Fig. 2), 

individual sources contributing to acoustic noise could not be identified in this clinical study 

to improve breath detection. This is the subject of planned controlled experiments to 

characterize noise that may be reflected in the PSG such as periodic leg movement, as well 

as those that are not reflected in PSG such as external speech or the television (which will 

exhibit differing periodicities to breathing), to improve the accuracy of acoustic analysis to 

track breathing and screen for SDB. Fourth, it is possible that acoustic analysis for SDB 

could ultimately be used beyond early screening; this could be tested prospectively in wider 

populations.

Appendix

Data for this study were recorded in American Academy of Sleep Medicine (AASM)-

accredited sleep labs. Centers providing data were:

1. Peninsula Sleep Center, Burlingham CA (Mehran Farid, MD; Director)

2. Northeast Medical Group, New London CT (Amit Khanna, MD; Director)

3. Doctors Community Hospital, Lanham, MD (Riad Dahkeel, MD; Director)

Abbreviations

AHI Apnea-hypopnea index

BMI Body mass index (kg/m2)

CPAP Continuous positive airway pressure

dB Decibel

ECG Electrocardiogram

EEG Electroencephalogram

EMG Electromyogram

FFT Fast Fourier transform

HST Home sleep testing

PSG Polysomnography

RMS Root-mean-square
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ROC Receiver operating characteristic

SD Standard deviation

SDB Sleep-disordered breathing
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Fig. 1. 
Spectral analysis of normal breaths in overnight sound file. a One minute of sound recorded 

from a smartphone during sleep in a 72-year-old woman. Each yellow band represents a 

breath. b Spectral magnitude-time series, emphasizing peaks (breaths). c Peaks and adjacent 

points in sound analysis. d Tagged features of each sound packet
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Fig. 2. 
Receiver operating characteristic (ROC) curves of acoustic signatures for breaths on 

simultaneous PSG. a C-statistic for identifying breaths was 0.91, derived by varying the 

peak prominence parameter, with a maximum area under the curve generated at a cutpoint of 

0.21. b C-statistic for identifying noise (non-breath sounds) was 0.95, derived by varying the 

packet area, with a maximum area under the curve generated at a cutpoint of 15,000 dB s
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Fig. 3. 
Automatic detection of apnea by acoustic spectral analysis in a 55-year-old man being 

evaluated for obstructive sleep apnea. a Spectral analysis of sound, b magnitude-time series, 

and c peak detection show apnea between 20 and 50 ms which was detected (d) by 

simultaneous PSG in which apnea concluded with an arousal event at ~50 s (labeled) which 

is hinted by larger and a broader constellation of spectral peaks on acoustic analysis. 

Obstructive sleep apnea was confirmed on whole-night PSG in this individual
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Fig. 4. 
Detecting normal breaths and noise on acoustic spectral analysis. a Spectral and b peak 

analyses show breaths (periodic bands) until approximately 40 s, representing breaths with 

periodicity ~0.2 Hz (once per 5 s). At approximately 42 s, a series of rapid additional sound 

bands disturb periodicity and correspond in c simultaneous polysomnogram showing body 

movement at 42–50 s. Listening to audio files confirmed that this sound represented 

shuffling in bed/moving
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Fig. 5. 
Automatic quantification of non-breath sounds by acoustic spectral area. a Acoustic spectral 

analysis and b peak analysis from magnitude-time series indicate periodic breaths, as well as 

additional non-periodic and brief sounds. Spectral magnitude-time series shows sounds from 

22 to 30 s that coalesce without distinct periodic peaks. c Area analysis of this packet gives 

area 26,613 db s, above the ROC-derived cutpoint for noise (non-breath sounds). Auditory 

examination verifies that this segment of the file represents likely movement noise. d 
Simultaneous polysomnogram confirms movement, shown by the leg channel movement as 

well as high-frequency activity on multiple other channels
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Fig. 6. 
Testing acoustic algorithm against whole-night PSG in validation cohort. Receiver operating 

characteristic (ROC) curve for whole-night acoustic respiratory index for diagnosing OSA 

on PSG. a AHI on PSG < 15 events/h versus b AHI on PSG > 15 events/h. The c-statistic 

was 0.87
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Table 1

Clinical characteristics of validation cohort

 Patient characteristics

 N  59

 Age, years  52.9 ± 15.1

 Male/Female  39/20

 Height/m  1.70 ± 0.10

 Weight/kg  94.1 ± 25.4

 Body mass index, (kg/m2)  32.6 ± 9.54

 Hypertension, % (n)  27.1% (16/59)

 STOP-BANG score  3.59 ± 1.33

 Apnea/Hypopnea Index (per hour)  30.0 ± 32.0

  No. with AHI < 5  11

  No. with 5 < AHI < 15  15

  No. with 15 < AHI < 30  15

  No. with AHI ≥ 30  18

 Prior OSA therapy or surgery  0
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